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The Euler equations, together with an equation of state, govern the motion of an
inviscid compressible fluid. Here, a new equation of state for volumes containing
both gas and liquid is derived; this allows the Euler equations for two substances,
here air and water, to be expressed in pure conservation form. This in turn allows
simulation of shocks in water interacting with small bubbles of air as the meniscus no
longer needs to be tracked explicitly. Extension to three space dimensions is shown
to be straightforward.

A test case showing how a shock wave in water interacts with a small (two-
dimensional) air bubble is presented. Simulations of a shock wave interacting with
two air bubbles, and a small multiphase region (comprising 50% water and 50% air
by volume) are then given. @ 2001 Academic Press
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1. INTRODUCTION

All fluids admit some compressibility and therefore support shock waves. A shock wa
is an abrupt (Lagrangian) change in fluid density and velocity; shock waves are thermo
namically irreversible and, in the cases considered here, are of negligible thickness.

Shock waves may be produced in liquids such as seawater by a variety of natural
artificial mechanisms [14]. Also, shock waves may be produced in human tissue in
process of shock wave lithotripsy [19]. Here, shock waves are produced in water at «
focus of an ellipsoidal tank. Shock waves pass almost unaltered into the patient,
(say) a kidney stone at the other focus will receive concentrated sonic energy, cau:
disintegration.
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The methods presented here are also of relevance to the study of shock wave propag
in a bubbly liquid [16]; and the equation of state presented in the present work is direc
applicable to liquid explosives with gas cavities [2, 5, 32]. Tan and Bankoff [30] consid
shock waves propagating through dilute bubbly mixtures but assume that the liquid pf
is incompressible, and that the bubbles remain spherical.

In these applications, itis important and interesting to understand the behavior of a sh
wave when it interacts with a small air bubble; for example, Deditial. [6] considered
lithotripsy in vitro and concluded that the dominant mechanism of shock wave action
cells is shock wave—gas bubble interaction.

When considering shock wave—gas bubble interaction, complications are introducec
having two separate equations of state [8, 26]. To date, only limited success with this prob
in more than one space dimension has been achieved, although Ding and Gracewsk
Ivings [14], and Grove and Menikoff [9] have applied adaptive mesh techniques to simi
cases (these workers’ simulations did not continue after the shock had passed the buk

Here, a technique is presented that overcomes many of the disadvantages of ads
meshes in a computationally cheap manner. A new equation of state for gas—water mixt
is derived that allows simulation of a wide range of two-phase flows including bubb
fluids [20], fogs [24], and foams [23].

The present work builds upon that of Saurel and Abgrall [26, 27], and Grove a
Menikoff [9], by presenting the Euler equations in conservation form. This allows sir
ulations to be carried out in two or three space dimensions, although only two-dimensic
problems are considered here.

Several test cases are presented. A detailed simulation of a shock—bubble interacti
given, followed by a shock wave interacting with a system of two closely separated bubb
and a region comprising 50% water and 50% air by volume.

2. THE EULER EQUATIONS

The Euler equations in two dimensions are

dp dpu  dpv
T4+ 4+ =0 1
8t+8x+8y (1)
dpu  dpu®  Jpuv d
dou oW dpw 9P,
ot X ay axX
9 dpu pv: 9
dpv | dpuv  9pvt P _ g
at X ay  dy
9E  Qu(E + dv(E +
n ( m+ ( P _

at ax ay

(@)

®3)

0, (4)

wherep is the densityy = (u, v) the velocity,E the stagnation energy per unit volume, and
p the pressure of the fluid. The pressure may be specified by the equation of state. Here
Tammann (or stiffened) equation of state [21] is used, following Grove and Menikoff [€
and Saurel and Abgrall [27]:

p=p(y—De—yp’ (5)
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wherey is the adiabatic exponent [218,= E/p — %(u2 + v?) is the internal energy per
unit mass, angh® a substance-specific pressure adjustment term that accounts for the sf
range attraction between liquid molecules. For wapfr~ 3 x 108 Pa [9]; and for air
p® = 0 taken to be an ideal gas—Eq. 5 thereby reducing to the ideal gas lawyHer& 4
is used for air, and the experimentally determined value of 7.15 is used for water.
Simulation of these equations in two and three dimensions, in a single medium, |
received much attention; Woodward and Colella [33] give a review article.
However, if two separate substances are considered, Egs. 1 to 5 must be augment
keep track of the fluid propertigs and p°. Because these quantities are advected (that i
dy /ot +u-Vy = 0) then Eqg. 1 shows

d dpyu dpyv
dpy  dpyu  dpyv _
at ax ay

0 (6)

app®  9pp°u  9ppv
ot aX ay

- 0. )

2.1. Euler Equations and Multiple Equations of State

Equations 1 to 7 allow simulation of a shock travelling through an air—water interfac
However, in practice, the equation of state (henceforth EOS) is poorly behaved when
water mixtures are considered.

Ilvings [14] considered a volum¥ at pressurep, comprisingvV water (substance 1,
densityp;) and(1 — v)V air (substance 2, densip). The density isp; + (1 — v)ps by
definition, and a representative adiabatic expopewas given by lvings as

y=vn+Ad-v)y (8)

because is advected, not conserved. Similar interpolations give the other advected teri
Ivings then used the EOS (Eq. 5) to give an expression algebraically equivalent to

p=(pier+ (1 — 1)) W1+ L —v)y2— 1) — Wy p®+ (1 —v)-0), (9)

e 71 v

and noted that this approach is defective in the sense that the EOS given by Eq. 9 pre!
that p is a function ofv when applied to a control volume containing water and air bott
at pressure. Ivings showed that this expression gives negative pressures for most val
of v with 0< v < 1. Shyue [28] presents a slightly different technique, generalized for ¢
arbitrary number of phases.

Ivings considered that the failure to predict a constant pregswas a failure of conser-
vative numerical methods; Ton [31] attributes this failure to a “failure of thermodynam
consistency in the EOS in cells containing [more than one] species.” Here it is shown t
conservative methods may indeed be used if a different EOS is adopted.

The pathology of nonconstaimt prompted Ivings [14] to consider air—water shock in-
teractions in terms of two separate computational regions with a line, representing
meniscus, separating them (only two space dimensions were considered). This appr
suffers from a number of disadvantages, one of which is the difficulty of testing for chanc
in topology of the meniscus: in two dimensions, a bubble has a meniscus that is a cir
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whereas during many shock—bubble interactions the meniscus separates into two sef
regions. Dealing with this type of behavior is difficult [10] in two dimensions, and has r
obvious generalization to three dimensions.

Note that there are two distinct types of discontinuity to consider: a discontinuity
phase—here the meniscus—and a discontinuity of density within one substance such
shock front. Thus, considerations of modelling the meniscus may be different from th
governing choice of shock-tracing methods or shock-smearing methods F25lexam-
ple, lvings used shock-smearing methods for the shock front together with an expl
discontinuity—the meniscus—separating the two phases. M@tal [22] discuss the
problem of interface motion in a more general context.

3. EQUATION OF STATE FOR MIXTURES

3.1. Overview

Consider a volume containing gaseous air and liquid water at the same temperature
an unknown pressurp. It is clear that volume fractiom of water is a function ofp (in
generaly is an increasing function of pressure).

In typical compressible flow situations, a small computational fluid element of volume
is considered that possesses known internal enezlfyy and a known mass of air and water
(p1V andp,V, respectively). A meniscus will separate two phases obeying qualitative
different equations of state.

It is shown in this paper that the two equations furnished by equality of temperature
pressure across the meniscus will determine the unknown values of pressuie/olume
fractionv.

In particular, determination of the pressure within the control volume is an EOS f
mixtures; this allows solution of the Euler equations in conservation form.

3.2. Densities and Conserved Quantities

The EOS applied to a volume containing water and air fails because it effectively assul
homogeneity; whereas in reality any control volume containing air and water has two disti
phases, separated by a meniscus.

Itis possible to proceed by applying the EOS to each phase separately and using the
that the pressure in each phase is identical. We again consider a VdlaeomaprisingvV
substance 1 (water) aril — v)V substance 2 (air).

Rather than conserve total mass and keep track of substance properties (EgQs. 1, 6, €
it is possible to conserve the amount of each substance explicitly. This approach reqt
the introduction of two further conserved variablesandp,, representing the densities of
substances 1 and 2, respectively. These quantities are mass (of substance 1 and 2) p
volume, and are therefore conserved:

dp1 | dpu  dprv
ot aX ay

-0 (10)

In the shock tracing approach, a discontinuity is maintained explicitly; the shock-smearing approach mo
a discontinuity as spread over a small number of computational elements. Here, shock-smearing technique
used to cover both the shock and the meniscus. Shock-smearing methods are generally preferable in this t
application as they can more easily accommodate changes in genus.
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a dp2U  0pov
dp2  dpau  0p2

=0. 11
ot aX ay (11)

Equations 10 and 11 refer to densities that are mass of substance per unit volume. |
the EOS requires densities of a different character fpgrand p, of Eqgs. 10 and 11: the
density required by an EOS is mass of substance per unit valfithat substancéensities
thus defined (i.e., mass of substance per unit volume of that substance) are not conse
in the sense that they do not obey a conservation equation such as Eq. 10. Such den
will henceforth be distinguished from conserved densities by the superscript “r,)o&s in

3.3. EOSs for the Separate Phases

There are two EOSs for the volume, one for substance 1 and one for substance 2,

p=pi(1— e —y1p° (12)
= py(v2 — e, (13)

where the superscript “r” i} means “internal energy per unit mass of substance 1” an
similarly for €. Now pj = p1/v andp; = p2/(1—v); ande] = e, /- ande, = ;2.

3.4. Equality of Pressures

Using the fact that the pressures of the two phases are identical (Egs. 12 and 13) ¢
an equation fop,

Pon-Dver—np® = 2= - De,, (14)
v 1—v

wherep/€e has been rewritten in terms p& andv (if v = 0 or 1 exactly then the problem

reduces to the single substance case).

This approach differs from that of Saurel and Abgrall [26], who consider a mixtur
pressureP defined (in the current notation) by = vp; + (1 — v) p2, where p; is the
pressure of fluid. Their approach is not applicable in the current context because phas
(water) is unstable to condensation unlegs very close to unity.

3.5. Internal Energies

Equation 14 has three unknowns:e;, and @. In order to close the system, another
relationship is required in addition to the requirement thate; + e,. There are two ways
to proceed: the temperature across the meniscus may be assumed to be constant; or, foll
Saurel and Abgrall [26], the two phases may be allowed to have different temperatures

Both approaches are described mathematically below and discussed further in Sectior

3.6. Equation of State for Gas—Water Mixtures at Equal Temperatures

The kinetic theory of gases implies

T.= (02— DE/R, (15)
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assuming air to be a polytropic gas. Hefg,is the thermodynamic temperature of air in
Kelvin, andR is the gas constant, here taken to be 479rf%a kg~! K=1. The Tammann
EOS implies

_ n =D (pi€l - p°)

T
' piK

: (16)

whereK is the liquid constant; following Sugimuret al. [29], this is taken to be 1089
Pa-m?3. kg~! K. Equality of temperatures gives an equation linkingith e; ande,,

=1 per—vp®  y2—1 pe

) 17
K 01 R 02 an

where the above definitions fof andel have been used. Equation 17 now gives

_eqp1+v(p°/p)cip2

(18)
Cop1 + C1p2

_ €Gip2 — v(p°/p)Cip2 (19)
Cz01 + C102

wherec; = (y1 — 1)/K andc; = (32, — 1)/R. Some implications of the assumption of
thermal equilibrium are discussed below in Section 4.1. Substituting Eqs. 18 and 19 i
14 gives, after simplification,

f(v) = v2(C1p2y2P° + C20171P%) — v[pe(C2p1(y1 — 1) + C1p2(y2 — 1))
+ (c102y2P° + C2p171P0)] + peGP1(y1 — 1)
—0. (20)

Equation 20 has a root in the interval [0, 1] becafise continuous and (1) <0< f (0);
the root is unique becaudé is strictly monotonic (the casé(0) = f (1) = O is forbidden
if p > 0); and it has the required properties whanor p, = 0. The meaningful root is
the smaller of the two because we requirg€ 0< 1 and the larger root is alwaysl (the
coefficient ofv? is positive). Solving Eq. 20 for and substituting into Eq. 13 gives, if

p1# 0,

pr—1)  egp1+v(p°/ p)Cip2
p=-ynp’+ : (21)
v C2p01 + C1p2
b — Vb2 —4ac
where Ve ———
2a
and a = C1p2y2p° + C2p1y1 P°

b = pe(Cop1(y1 — D) + Crpa(y2 — 1)) + 122 p° + Cop1y1 P°
C = peqoi(y1—1).
If p1 = 0 then the limit is correct; alternatively the right hand side of equation 14 give

the appropriate general expression. It may be verified directly that equation 21 behave
expected when eithen or p, = 0.
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3.6.1. Equation of State for Gas—Water Mixtures at Unequal Temperatures

It is instructive to consider how Egs. 1 to 4 and the isothermal EOS have to be chan
to accommodate the extra degree of freedom introduced by allowing the phases to |
different temperatures. The resulting equations are not solved here.

The EOS (Eq. 21) assumed that both phases were at the same temperature; relaxin
assumption requires new equations for the internal energy of each phase separately. Be
Eqg. 4 governs only the total stagnation energy per unit volume, a new equation is requ
to keep track of the stagnation energies of the two phases separately.

Following Saurel and Abgrall [26] (but adopting the current approach of a unique press
and velocity at any point), the relevant equations are

91 | QU(Er+vp) | du(Ertop) | v

(22)

at ax ay at

0E; OAu(Ex2+ A —-v)p) dv(Eo+ (@A —v)p) ov
2= = — 23
ot + aX + oy + ot’ (23)

whereE; = pe; + 3p1(U? + v?) andE; = pe; + 1p,(u? + v?) are the stagnation energies
per unit volume for each phase; adding Egs. 22 to 23 recovers conservation of total ene
The nonconservative terms on the right-hand side correspond to the phases doing wo
one another when the volume fraction changes.

Equations 22 and 23 do not imply independence of the two phases; both move at
same velocity, and the phases may exchange energy mechanically.

If the internal energies of the two phases are known, Eq. 14 gives

f)=v:— vy — D+ a2 — D) + 1 +a1(y1 —1) =0, (24)

wherea; = pe;/(y1p°) anday = pey/(y1p°) are nondimensionalized internal energies.
Again a root with 0< v < 1 is required. As for Eq. 20, such a root exists and is the smalle
of the two solutions. Substituting the appropriate solution to Eq. 24 into Eq. 14 gives

2pe1 (1 —=1)
_leg‘i‘m, if p1#0
p= (25)

2p(y2 =D& ;
24+b+vbZ—4c’ if p27# 0,

where—b = a1(y1 — 1) + a2(y» — 1) + 1 andc = a1(y1 — 1) are the second and third
coefficients in Eq. 24. Equations 25 require two different forms to handle the limiting cas
of p; = 0 andp, = 0, because vanishing density does not imply vanishing internal ener
This issue does not arise for the isothermal case.

3.7. Summary

The EOS is applied to each phase separately. The two EOSs use derisitiesined as
mass of phaseper unit volume of that phase (thus implicitly recognizing the presence
a meniscus)—and internal energy densidesiefined as internal energy per unit mass of
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phase. The two unknowns—pressupeand volume fractiom—are determined in terms of
the conserved variables in two different ways depending on whether the phases are ass
to be the same temperature.

In the isothermal case, the two required equations are obtained by matching pressure
temperature across the meniscus. The resulting EOS is applicable to an isothermal air—\
mixture.

If differing temperatures across the meniscus are allowed, as discussed by Saurel
Abgrall [26], the internal energies of each phase have to be obtained from two ene
conservation equations, one for each phase. The remaining unknown is furnished by
equality of pressures on either side of the meniscus.

The isothermal EOS presented here allows simulation of the Euler equations in con
vation form.

4. APPLICATIONS FOR A MIXTURE EOS

Equation 21, although designed for control volumes through which a single menis
passes, is applicable to any volume containing water and air at the same temperature.

In particular, strong shock waves through air—-water foams, bubbly fluid, or air laden w
water droplets may be simulated using Eq. 21 as an EOS, following Saurel and Abgrall [2
These workers maintain a terminological distinction between multiphase and multifl
flows: multiphase flows have many interfaces which are not tracked individually, where
in multifluid flows, most of the control volumes contain pure phases and the interfaces
well-defined.

The related problem of compressible flow in a dust-laden gas [3, 24] has received m
attention under the assumption that the second phase (dust) is incompressible. The pr
work, in contrast, allows for the compressibility of the nongaseous fraction; equivalen
the restriction to pressurg 1 p° is relaxed.

Young [34] considers droplet-laden flow, again with the assumption that the nongase
phase is incompressible. He shows that surface energy terms can be important; but i
present work the Weber number (based on bubble diameter and post-shock fluid spee
about 10, so these effects may be neglected.

In both multiphase and multifluid flows, the EOS is applied to control volumes th
may possess a meniscus but may be regarded as homogeneous on the lengthscale
computational grid. Examples of fluids satisfying this restriction would include drople
laden air, and bubbly liquids.

Such multiphase flows may have strikingly different properties from single phase fluit
For example, consider water at10° Pa and 15C that includes 1% air by volume (this
pressure is approximately that considered in the case study below). If such a two-pt
mixture were allowed to expand isothermally to atmospheric pressure, its volume wo
increase by a factor of about 200—in contrast to pure water at this pressure, which wc
expand by a factor of about 1.8.

It may be shown that the speed of sourgssociated with this EOS obeys

] B] ]
szﬁ_p_i_&_p_i_%_p, (26)
pdp1  p dp2  p=oe

but the full algebraic form is rather opaque.
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4.1. Equality of Temperatures

The EOS 21 essentially assumes equality of temperature across the meniscus: each
putational fluid element is at one temperature.

For control volumes with a homogeneous EOS, spatial temperature variation is not at
sue because then the pressure is afunction only of total internal energy and density. How:
as discussed by Jenayal. [15], a closed control volume containing a contact discontinuity
separating polytropic gases of identical pressure, but differantd temperature, does pose
problems.

If these two phases are allowed to come to thermal equilibrium a change in press
occurs, essentially because the specific beas different in either phase [17, 18].

Although Jennet al. [15] characterize this behavior as an “error,” it is possible to conside
the change in pressure as a real change resulting from nonzero thermal conductivity. J
et al. nullified this error by adjusting the total energy per unit volume in such a way as
maintain a constant pressure.

Ton [31], considering mixtures of polytropic gases, states that each species need
“retain its own properties, especially its temperature.” This statement is not applicable
air-water mixtures because Ton effectively assupfes 0 and so the issue of instability
to condensation does not arise.

In the present context, in which energy is conserved exactly, it is instructive to consit
the effects of the assumption of constant temperature when this may not be the case.

If thermal diffusion is Fickian, the thickness of the thermal boundary layer that develo
after timet is ~./7«, wherek is the thermal diffusivity. A reasonable timescale to use
would ber /c, wherer is the bubble radius arathe speed of sound,; this gives a lengthscale
| of ~6 x 10°® m. Numerical lengthscales of this order are impractically small for th:
present case.

However, an estimate for the deviation from the thermally isolated case may be m:
as follows. For simplicity, only phase 2 (air) is considered, because spurious increase
internal energy in air generate far more mechanical energy. The phase “numerical |
conduction” is used here to mean the difference in internal energy of a phase betwee
real valuepg and the value as calculated on the basis of thermal equilibrium; numeric
conduction is thus a phenomenon confined to a single computational element.

If a control volume containing two phases at equal temperature is considered then, u
the notation introduced in Section 3, the internal energy in phase 2 is

e = (ALt (L= v)0h) - (eaph — v) — vpPerd — v)p)) 27)
2PV + C1ph(1 — v) ,

where Eg. 19 has been used ér In the general case, where the phases are allowed to |
at different temperatures, the internal energy is

p€ = (1—v)p5e,. (28)

A measure of the impact of assuming a computational fluid element to be isotherms
given by comparing the difference between expressions (27) and (28) (that is, the ene
transferred by numerical heat conduction across the meniscus) antetenicawork
done on the second phase.

Taking the least favorable case conceivable (water has an infinite heat capacity comp
with that of air; and using, for post-shock water ang| for undisturbed air), the internal
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energy transferred to phase 1 by numerical conductiesr&xp5(e; — e1) per unit width;
the mechanical work done on the bubble-is? p per unit width. Heresx is the numerical
gridsize, ando the post-shock pressure.

The nondimensional ratigxp}y(e; — e;)/rp is about 3x 1078 for the bubble considered
in Section 6. The assumption of local thermal equilibrium is thus justified because the buk
receives far more energy through mechanical work than it does from numerical conduct

4.1.1. Thermal Equilibrium: Summary

The above argument showed that the assumption of uniform temperature across a «
putational grid cell is incompatible with measured thermal diffusivity of air or water.

However, it was then shown that the the mechanical work done on a small bubble (
second test case considered in Section 6) dominated the numerical conduction terms.
is because numerical conduction occurs only over a single computational grid cell.

It should be noted that the system presented here, although it assumes thermal equilik
within a single grid cell is nevertheless able to simulate non isothermal flow, with the provi
that thermal gradients cannot be resolved at lengthscalgsFor example, in the test case
considered in Section 6, the temperatures of the pre- and post- shock fluids differ by al
1148 K and this discontinuity of temperature is resolved to about four or five computatiol
elements.

5. SOLVING THE ADVECTION EQUATION

The advection equations (1) to (4), being in conservation form, are a special case of
general advection equation

dw ot 39 _

e = 29
ot Tax T ay (29)
If we specify
Joil p1U 1V
02 p2u P2V
w=|pu| f=| pu+p | g= puv (30)
oV puv pv?+p
E u(E+ p) v(E+p)

together with an EOS and the requirement that p; + p2, then the two-dimensional
Euler equations are recovered. One benefit of considering equations in this form is
the components of andg may be regarded as fluxes; and in the context of numeric:
techniques the standard format

wX, y;t+68t) = wX, y; )
1 1 1
+ (5X8Y) flx— 5ch, y;t) — f{x+ ESX, y;t ]| dyést
. 1 1
+(OX3y) ™ |9l X, Y — §6y;t —g(x, y+ an;t SX6t (31)

clearly shows that the componentsfoindg have the characteristics of fluxes.
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Numerical solution of this class of equations is not simple and many numerical scher
have been devised; review articles are given by Chock [4] and Woodward and Colella [?
The scheme used here is the Flux Corrected Transport (FCT) scheme of Zalesak [35], |
without modification.

5.1. The Flux Correction Scheme of Zalesak

FCT calculates the fluxes between adjacent elements by taking a weighted average c
flux as computed by a low-order scheme and the flux as computed by a high-order sche
The weighting is done in such a manner as to use the high-order scheme unless to c
would result in the creation of overshoots (characterized as new extrema) not predictet
the low-order scheme. The assumption is therefore that any new extrema predicted by
low-order scheme are genuine.

5.1.1. The Low-Order Convective Flux
The low-order fluxf' used is simply a donor cell scheme plus a zeroth-order diffusiv
flux with coefficientD. In one dimension,

1
5w = > (Ui + Ui+ DWES /5 — DEX(w]', 1 — w!) (A7, (32)

where

wy' if ui+uiy1>0

wiD +C €2 = { (33)

is read ‘w donor cell” andy; is the fluid speed in cell. Extension to multidimensions is
straightforward.

wi“+1 if Ui+Ui+1<0

5.1.2. The High-Order Convective Flux

The high-order fluxf " used here is taken from a later work by Zalesak [36]. Zalesa
called these expressions “high-order ZIP fluxes,” following the terminology of Hirt [13]
Zalesak presented a number of theoretical advantages of ZIP fluxes and pointed out
a given order of accuracy was more simply achieved using this scheme. To fourth-or
accuracy:

’ 2 1
f% @ = glwictt +with o] = ofwieoli + wilhi 42 4 Wi gl -1+ wi -1 +a].

(34)

5.1.3. Flux Limiting and Conservation Equations

Zalesak’s flux correction scheme has been used by the present author to solve Eq. (2
the context of heavy gas dispersion [12] modelled using the resisted shallow water equati
and liquid spills [11]. All these systems share with the Euler equations the ability to supp
discontinuous solutions (i.e., shocks or hydraulic jumps).

The numerical domain used here is a 20@00 grid of computational elements, each
0.15 mm square. The Courant number [25] and the zeroth-order diffusion coefficient [
were both fixed at 0.1.
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The simulations presented here took about 30 minutes on a PC (Pentium Ill, 450V
processor).

6. RESULTS: SHOCK-BUBBLE INTERACTION

The above numerical scheme is now used to simulate the Euler equations (29) with
EOS given in Eq. (21). Results are given of a shock interacting with: a one-dimensio
bubble; a small two-dimensional (cylindrical) bubble; two bubbles of different sizes; al
finally a region comprising 50% water and 50% air.

6.1. Shock—Bubble Interaction: Planar Bubble

The present scheme is now used to simulate a shock interacting with a planar air butk
The fluid properties and shock characteristics are given in Table I; the air bubble is bo
by two planes, both parallel to the shock front and 2.4 mm apart. Figure 1 shows a ti
series for this simulation. The final image exhibits an expansion shock that is qualitativ
similar to that in Fig. 4.

6.2. Shock—Bubble Interaction: One Bubble

A simulation of a shock interacting with a cylindrical bubble of diameter 6 mm is no
given; the fluid properties are as above. These simulations differ from Ivings’ in that th
continue beyond the point at which the shock leaves the bubble.

Figure 2 shows the bubble just before the shock hits it (signals cannot travel faster t
the shock speed, so the bubble is undisturbed) and at three subsequent times. Not
the shock remains relatively sharp (the shock is four to five computational fluid eleme
wide, a value typical of Flux Correction [35]) which itself gives confidence in the numeric
scheme.

The backward-moving rarefaction shock (as predicted by Grove and Menikoff [9] ar
numerically, by Ivings [14]) is clearly visible in the second and third diagrams of Fig.
as an expanding ring. In the fourth diagram, the bubble has split into two as a liquid je
formed, in agreement with the experimental findings of Bourne and Field [1].

Note that disturbances propagate more slowly inside the bubble than in water; thus
shock front is retarded by the bubble. However, the liquid jet does initiate a shock wave
the undisturbed water that may be seen in the fourth diagram.

Figures 3 and 4 show, in perspective form, the density of the computational domain at
2.2 us and 5.6us after the shock hit the bubble. Comparing these figures shows that
shock propagates at a speed of about 2944 m/s.

TABLE |
Shock—Bubble Interaction: Initial Conditions, Following Sugimura et al. [29]

Density (kg/ni)  Speed (m/s)  Pressure (Pa) y Stagnation energy (JAn

Post-shock 1225.6 542.76 .61x 10° 7.15 7942 x 10°
Gas bubble 1.2 0 101325 14 283 1¢°
Pre-shock 1000 0 101325 7.15 353X 10°
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FIG.1. Shock-bubble interaction for a planar bubble. Density as a function of position just after shock reac
the bubble; and after 1.4, 2.6, and 3.4. Undisturbed bubble thickness 2.4 mm.
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FIG. 2. Shock-bubble interaction just after shock reaches bubble; and after 1.0, 2.2, ausd 3Hin lines

show water density contours (1150 and 1050 Ky/amd the thick line shows the meniscus. Undisturbed bubble
diameter 6 mm; axes show distance from bubble center in mm.
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Figure 3 shows the rarefaction shock propagating away from the bubble. At this stage,
bubble is still collapsing and the water immediately behind the bubble is moving faster tf
the following flow but slower than the shock speed. It is the case that within the rarefact
shock region, the velocity has a transverse component that acts to focus both kinetic
internal energy in the vicinity of the bubble.

InFig. 4, an almost axisymmetric shock propagates away from the air bubble as it expal
The energy driving this process is derived from the energy focused by the rarefaction she
The original shock front has almost returned to its equilibrium, planar form to which it ten
asymptotically.

The two points at which the expansion shock intersects the reforming original shock
of particular interest. At these points, undisturbed fluid (in this case water) is interacti
with the two shocks simultaneously and the small but finite thicknesses of the simula
shocks are clearly visible.

6.3. Two Bubbles

Because the methods presented in this paper do not have to track changes in topc
of the meniscus, it is possible to simulate arbitrary configurations of air and water in t
computational domain.

Figures 5 and 6 show a shock interacting with two air bubbles of diameters 6 and 3 n
This simulation illustrates the complex interactions that can occur; in Fig. 6, the larc
bubble is still in the rarefaction shock phase while the smaller bubble has reached
expansion shock phase.
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FIG.5. Shock—bubble interaction just after shock reaches smaller bubble; and after 1.4, 2.6, asndiik
lines show water density contours (1150 and 1050 Rpyamd the thick line shows the meniscus bounding the
circular air bubble. Undisturbed bubble diameters 3 mm and 6 mm.
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FIG.6. Numerical solution of a shock interacting with two bubbles aften&fmeshplot of density. Original
bubble diameters 6 mm and 3 mm.

In Fig. 5, the smaller bubble apparently disappears; this is because its size becc
comparable to the dimensions of the numerical grid. In the simulations presented h
mass of air is conserved to within one part irf 10

6.4. A Foam Bubble

We now consider the original (single) bubble problem but replace the air bubble witt
foam comprising 50% water and 50% air by volume, as described in Table II.

Such a foam bubble has very different properties from an air bubble: its density is ab
500 kg/n? (as opposed to 1.2); it is less compressible than air; and sound travels &
speed different from that of either pure air or pure water (the exact value depends on
pressure).

Figure 7 shows simulation of a shock wave in water interacting with a small regi
comprising 50% air by volume. The shock, originally planar, is deflected by the presel

TABLE Il
Shock—Foam Bubble Interaction: Initial Conditions

Density (kg/ni)  Speed (m/s)  Pressure (Pa) y Stagnation energy (JAn

Post-shock 1225.6 542.76 .61x 10° 7.15 7942 x 10°
Foam bubble 500.6 0 101325 n/a 196 10°
Pre-shock 1000 0 101325 7.15 35% 10°
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FIG. 7. Shock-bubble interaction just after shock reaches (50% by volume) foam bubble; and after 1.0,
and 3.0us. Thin lines show water density contours (1150 and 1050 Rgimd the thick line shows the boundary
of the circular foam bubble. Undisturbed bubble diameter 6 mm.

of the foam, but not to the extent seen in Fig. 2. There is less distortion of the inclusio
outline, and the rarefaction shock is much weaker. Also note how the meniscus disapp
in the fourth frame: this is because the thick line is the contour corresponding to volu
fractionv = 0.5, and the foam region is subject to higher than atmospheric pressure a
the passage of the shock. This preferentially compresses the air leading to a higher vol
fraction. The contour line is absent because nowhere in the computational domain doe:
volume fraction exceed 0.5.

Some of these results might be expected because of the inclusion’s intermediate de
(500 kg/n?) and compressibility although the detailed structure of the flow is not amenal
to simple analysis.

7. CONCLUSIONS AND FURTHER WORK

This paper has developed a new equation of state that gives the pressure of a gas—
mixture in terms of variables that obey conservation equations. Thus, compressible flo
two media may be simulated.

Although the primary goal of this work was to simulate shock—bubble interactions (tl
new EOS being required to handle computational elements through which a menis
passes), applications of this work might include the simulation of shocks moving throu
foams and droplet-laden gas. This is straightforward in principle, although further wc
would be required to determine a multiphase generalization of Table I.

Further work might include extension of the present computational method to thr
dimensions. Applications of the present work include simulation of problems in sho
wave lithotripsy, explosive detonation, and compressible flow in bubbly fluids.
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